Accueil Remonter Schémas Logiciels et Circuits Mes livres Services Liens Contactez-moi Librairie  
   

Con. Audio/Vidéo
Con. Informatiques
Prog. PIC
Interface Série
Interface Parallèle
Bus I2C
UVPROM/ EEPROM
Calcul des Selfs

 

 

Réalisez et calculez vos selfs

Les selfs ou bobines ont une particularité remarquable : ce sont les seuls composants passifs que l'on puisse fabriquer facilement soi-même, et que l’on doive même fabriquer dans certains cas ; lorsque l’on a besoin de valeurs très faibles notamment. En effet, il suffit d'enrouler quelques spires de fil sur un mandrin, voir même sur « rien » ou « en l’air » comme l’on dit alors, pour réaliser une vraie self.

Cette possibilité étant très souvent mise à profit, surtout dans les montages haute fréquence où des valeurs d’inductances relativement faibles sont généralement nécessaires, nous allons voir comment calculer ces bobines de fabrication « amateur ».

Avant cela, il me faut mettre à mal une idée reçue largement répandue : ce n'est pas parce que vous fabriquerez une self vous-même qu'elle sera plus mauvaise ou moins fiable qu'un modèle du commerce pour peu que vous preniez un minimum de précautions. Bien sûr, les petites inductances moulées, codées par des anneaux de couleur comme des résistances sont très jolies ; mais elles ne sont pas nécessairement de meilleure qualité, surtout pour les faibles valeurs, que vos réalisations personnelles.

Les bobines à une seule couche, sans noyau

Les selfs les plus faciles à calculer sont les selfs dites à air ou sur air, ce qui signifie tout simplement qu'elles sont bobinées sur « rien » pour les plus rigides d'entre elles, ou bien sur un noyau totalement non magnétique (tube en plastique par exemple) pour les autres.

Pour être franc, il n'existe pas de formule permettant de déterminer avec exactitude la valeur d'une self. Les relations que je vais vous proposer sont donc des formules approchées qui donnent un résultat valable à 15 % près environ. Cette approximation doit cependant être relativisée ! N’oubliez pas en effet que la valeur de nombreux condensateurs n'est connue qu'à 20 % près, et encore je ne parle pas des chimiques pour lesquels la tolérance peut atteindre 50 % dès que l’on dépasse le µF !

Pour les selfs à air à une seule couche, c'est à dire celles que vous réaliserez le plus souvent et le plus facilement, la formule la plus connue et la plus précise est celle dite de Nagaoka que voici :

Bobine à une seule couche

2 . a / b k 2 . a / b k
0 1 2 0,526
0,05 0,97 2,5 0,472
0,1 0,959 3 0,429
0,15 0,939 3,5 0,394
0,2 0,92 4 0,365
0,25 0,902 5 0,32
0,3 0,884 6 0,283
0,4 0,85 7 0,258
0,5 0,818 8 0,237
0,6 0,789 9 0,219
0,7 0,761 10 0,203
0,8 0,735 25 0,105
0,9 0,711 50 0,061
1 0,688 75 0,043
1,25 0,638 100 0,035
1,5 0,595 200 0,019
1,75 0,558 400 0,011

a = rayon de la bobine en cm

b = longueur de la bobine en cm

n = nombre de spires

k = coefficient donné par le tableau

L = inductance en µH

L = (0,0395 . a2 . n2 . k) / b

Cette formule donne un résultat en µH si les dimensions sont indiquées en cm. La constante k qui apparaît dans cette relation est donnée par le tableau en fonction du rapport 2 . a/b. Le diamètre du fil, qui n'apparaît pas dans cette relation, dépend du nombre de spires et de la longueur de la bobine. Il peut presque être choisi librement mais il faut tenir compte des remarques que voici.

La résistance ohmique d'une bobine doit être aussi faible que possible, afin qu’elle se rapproche au mieux du composant parfait de résistance série nulle. On a donc intérêt à choisir du fil aussi gros que possible pour minimiser cette résistance. Ce choix est évidemment limité automatiquement par le rapport de la dimension b au nombre de spires !

Des impossibilités peuvent aussi se manifester. Ainsi, une bobine pour laquelle il faudrait enrouler 1000 spires de fil sur 5 mm de longueur serait irréalisable puisqu'il faudrait alors du fil de 5/1000 de mm ce qui n'existe pas ! Plusieurs passes peuvent donc être nécessaires lors de l'application de cette relation avant de trouver une combinaison de paramètres satisfaisante.

Les bobines à plusieurs couches sans noyau

Si vous faites quelques essais avec la relation précédente, vous vous rendrez compte très vite que pour obtenir des valeurs d’inductances relativement importantes (disons à partir d’un mH) il faut bobiner un très grand nombre de spires.

On arrive alors relativement vite à des blocages tel celui évoqué ci-dessus et de telles valeurs d’inductances doivent être considérées comme incompatibles d'un bobinage à une seule couche. Une première solution passe par la superposition de ces dernières.

Dans ce cas, la formule de Nagaoka n'est plus utilisable et il faut faire appel à la relation appelée formule simplifiée de Maxwell, qui est la suivante :

d = diamètre de la bobine en m

b = longueur de la bobine en m

e = épaisseur de l'enroulement en m

n = nombre de spires

Bobine à plusieurs couches

L = (n2 . d2) . (d2 - 2,25 . e) / d . (43,8 . d + 112,5 . b2)

Elle prend en compte l'épaisseur du bobinage et autorise de ce fait plusieurs couches. Malheureusement, cette relation est moins précise que la précédente et ce d'autant plus que le nombre de couches est élevé.

Les bobinages sur pot ferrite

Lorsque l'on veut réaliser un bobine de valeur un tant soit peu importante, la self à air est assez mal adaptée et il faut faire appel à un élément qui concentre les lignes de champ à l’intérieur de la bobine. Cet élément n'est autre qu'un noyau magnétique mais, pour obtenir des résultats relativement précis, il est conseillé de faire appel soit à un tore de ferrite, soit à un pot du même matériau.

Pot ferrite

Ces supports, visible sur la figure ci-contre, existent à l'heure actuelle avec des tailles et des références bien précises et, si vous ne les avez pas mélangés dans vos tiroirs, vous pourrez calculer très précisément la self que vous obtiendrez en y bobinant du fil grâce à leur paramètre clé qui est l'inductance spécifique.

Cette donnée est baptisée Al et l'on doit toujours vous la fournir lorsque vous achetez un tel composant. En effet, si vous n’en disposez pas, vous n’aurez aucun moyen de la déterminer et votre pot ou votre tore sera parfaitement inutile. L’inductance spécifique Al dépend du matériau du tore ou du pot car, même si toutes les ferrites se ressemblent, leur composition et leurs propriétés magnétiques varient dans de grandes proportions. Al peut ainsi être compris entre 5 et 1000 environ.

Le calcul d'une bobine réalisée sur un tore ou sur un pot est d’une extrême simplicité puisqu’il fait appel à la relation :

L = n2 . Al 

Cette relation impose seulement de faire attention à « l'unité » dans laquelle vous est fournie Al de façon à adapter l'unité de L en conséquence. On trouve en effet parfois du nH par tours carrés ou du pH par tours carrés dans les feuilles de caractéristiques des tores et des pots.

Outre cette simplicité et cette précision de calcul, un autre avantage des tores et des pots est que les selfs qui y sont réalisées sont très peu sensibles à leur environnement et ne rayonnent quasiment pas. C'est exact par nature pour les tores puisque, du fait de leur structure, le noyau magnétique ne comporte aucune ouverture par laquelle le champ magnétique produit pourrait fuir.

Pour les pots c’est un peu moins vrai puisque les deux demi-coquilles ne sont jamais parfaitement jointives, mais les faibles fuites qui se produisent au niveau de leur assemblage sont fortement atténuées par le blindage métallique généralement fourni avec ces derniers (en standard ou en option selon le modèle du pot).

Les bobines sur circuit imprimé

Si vous avez manipulé des appareils mettant en jeu des fréquences très élevées telles que les VHF ou les UHF, mais aussi parfois la simple gamme de radiodiffusion FM, vous avez certainement remarqué l'usage de plus en plus fréquent de selfs imprimées.

Ces dernières sont réalisées par enroulement en spirale d'une piste de circuit imprimé. Une telle solution est intéressante à plus d'un titre car elle présente en effet les avantages suivants :

  • une excellente reproductibilité de la self puisqu'elle est gravée en même temps que le circuit en respectant un dessin très précis ;

  • une totale insensibilité aux vibrations, ce qui n’est pas le cas des self à air notamment ;

  • une diminution du nombre de composants à stocker et implanter, ce qui est sans intérêt au niveau amateur mais très intéressant pour les fabrications en grande série où tout est bon pour réduire les coûts.

Self sur circuit imprimé

Au vu de ces éloges, vous êtes en droit de vous demander pourquoi des selfs si intéressantes sont cantonnées aux seules très hautes fréquences. En fait, on ne peut réaliser avec ce procédé que des selfs de faibles valeurs qui ne trouvent donc leur intérêt qu'en très haute fréquence.

La figure ci-contre présente une telle self avec les paramètres utilisés dans la formule associée permettant de calculer sa valeur. Ici encore, il s'agit d'une relation approximative mais qui donne des résultats précis à 10 % près environ. En pratique, et bien que l'on ait le choix pour a et b, on utilise généralement des valeurs de l'ordre du mm.

c =  (L / B)0,375

avec B = 2,7 . 10-9 . ( 1 / (1 + b/a)1,67 ) . 1/a1,67

Toutes les dimensions sont en mm et la valeur de L est en H. Ce n'est pas une formule très pratique mais, avec une calculette scientifique on arrive assez vite au résultat désiré.



Site déclaré à la CNIL sous le n° 1112858
© 2011 - C.Tavernier - Reproduction interdite sans autorisation